Makine Öğrenimi (Machine Learning) Nedir?
- engindani5
- 11 Nis 2022
- 2 dakikada okunur
Güncelleme tarihi: 27 Nis 2022
Makine öğrenimi, bilgisayarların, açıkça programlanmadan görevleri nasıl yerine getirebileceklerini keşfetmelerini içerir. Belirli görevleri yerine getirmeleri için sağlanan verilerden öğrenen bilgisayarları kapsar. Bilgisayarlara atanan basit görevler için, makineye eldeki sorunu çözmek için gereken tüm adımları nasıl uygulayacağını bildiren algoritmalar programlamak mümkündür; bilgisayar tarafında öğrenmeye gerek yoktur. Daha gelişmiş görevlerde insan için gerekli algoritmaları elle oluşturmak zor olabilir. Uygulamada, insan programcıların gerekli her adımı belirlemesinden ziyade, makinenin kendi algoritmasını geliştirmesine yardımcı olmak daha etkili olabilir.
Makine öğrenimi disiplini, bilgisayarlara tam olarak tatmin edici bir algoritmanın bulunmadığı görevleri gerçekleştirmeyi öğretmek için çeşitli yaklaşımlar kullanır. Çok sayıda olası yanıtın olduğu durumlarda, doğru yanıtlardan bazılarını geçerli olarak etiketlemek bir yaklaşımdır. Bu, daha sonra bilgisayarın doğru yanıtları bulmak için kullandığı algoritmayı/algoritmaları geliştirmede eğitim verisi olarak kullanılabilir. Örneğin, sayısal karakter tanıma görevinde sistemi eğitmek için el yazısıyla yazılmış rakamların MNIST veri kümesi sıklıkla kullanılır.

Tarihi ve diğer alanlarla ilişkileri
Makine öğrenimi terimi 1959'da bilgisayar oyunları ve yapay zeka alanında öncü ve IBMer olan Amerikalı Arthur Samuel tarafından icat edildi. 1960'larda makine öğrenimi araştırmasının temsili bir kitabı, Nilsson'un Öğrenme Makineleri hakkındaki kitabıydı ve çoğunlukla örüntü sınıflandırması için makine öğrenimi ile ilgiliydi. Model tanıma ile ilgili ilgi, 1973'te Duda ve Hart tarafından tanımlandığı gibi 1970'lerde de devam etti. 1981'de, bir sinir ağı 'nın bir bilgisayar terminalinden 40 karakteri (26 harf, 10 rakam ve 4 özel sembol) tanımayı öğrenmesi için öğretme stratejilerinin kullanımına ilişkin bir rapor verildi.
Tom M. Mitchell, makine öğrenimi alanında incelenen algoritmaların geniş ölçüde alıntılanan daha resmi bir tanımını yaptı: "Bir bilgisayar programının performans ölçüsü "P" ve bazı "T" görev sınıflarıyla ilgili olarak "T" görevlerindeki performansı "E" deneyimiyle iyileşiyorsa "P" ile ölçüldüğü gibi E deneyiminden öğrendiği söylenir. Makine öğreniminin söz konusu olduğu görevlerin bu tanımı, alanı bilişsel terimlerle tanımlamak yerine temelde operasyonel tanım sunar. Bu, Alan Turing 'in "Computing Machinery and Intelligence" adlı makalesinde "Makineler düşünebilir mi?" "Makineler bizim (düşünen varlıklar olarak) yapabildiğimizi yapabilir mi?" sorusuyla değiştirilir.
Günümüzün modern makine öğreniminin iki amacı vardır, biri verileri geliştirilen modellere göre sınıflandırmak, diğer amaç ise bu modellere dayalı olarak gelecekteki sonuçlar için tahminler yapmaktır. Verileri sınıflandırmaya özgü varsayımsal bir algoritma, kanserli benleri sınıflandırmada onu eğitmek için denetimli öğrenmeyle birleştirilen mollerin bilgisayar görüşü kullanabilir. Hal böyle olunca, hisse senedi ticareti için bir makine öğrenme algoritması, tüccara gelecekteki potansiyel tahminler hakkında bilgi verebilir.
Kaynak: Wikipedia
Comments